RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. THIRD SEMESTER EXAMINATION, DECEMBER 2011

SECOND YEAR

Date : 20/12/2011	STATISTICS (General)	
Time : 11am – 1 pm	Paper : III	Full Marks : 50

1.	An	swer any five questions :	4×5 = 20
	a)	If X_1, X_2, \ldots, X_n are random sample from $N(\mu, \sigma^2)$ population, obtain the	
		distribution of sample mean \overline{X} .	4
	b)	If $X \sim Bin(n, p)$ distribution, then find out an unbiased estimator of $p(1-p)$.	4
	c)	Define consistency. State the sufficient condition for an estimator to be consistent.	4
	d)	Distinguish between Point estimation & Interval estimation.	4
	e)	Define Type–I error and Type–II error in context with the testing of statistical hypothesis.	4
	f)	An urn contains 6 marbles of which θ are white and the others black. In order to test the null hypothesis $H_0: \theta = 3$ against $H_1: \theta = 4$, two marbles are drawn at	
		random (without replacement) and H_0 is rejected if both the marbles are white.	
		Find the probabilities of type I and type II error.	2+2
	g)	Show that sample variance is a biased estimator of population variance in sampling from an infinite population.	4
	h)	Obtain the confidence internal for differences in means of two independent normal populations when the variances are known.	4
•			
2.	An	swer any three questions:	10x3 = 30
2.	Ana a)	swer any three questions: Show that in sampling from normal population the sample mean and the sample variance are independently distributed. Find the sampling distributions.	10x3 = 30 5+5
2.			
2.	a)	Show that in sampling from normal population the sample mean and the sample variance are independently distributed. Find the sampling distributions. Describe the Pearsonian Chi-square test for homogeneity and independence of attributes. Find the simplified form of the test-statistic for 2x2 case. Derive the ML estimator of μ and σ^2 of a normal distribution. Check that the	5+5 6+4
2.	a) b)	Show that in sampling from normal population the sample mean and the sample variance are independently distributed. Find the sampling distributions. Describe the Pearsonian Chi-square test for homogeneity and independence of attributes. Find the simplified form of the test-statistic for 2x2 case. Derive the ML estimator of μ and σ^2 of a normal distribution. Check that the estimator of μ is unbiased and then find the standard error of the estimator. Suppose that we have two univariate normal distributions with known means μ_1, μ_2 and unknown variances σ_1^2, σ_2^2 . Describe a procedure for testing the	5+5
2.	a) b) c)	Show that in sampling from normal population the sample mean and the sample variance are independently distributed. Find the sampling distributions. Describe the Pearsonian Chi-square test for homogeneity and independence of attributes. Find the simplified form of the test-statistic for 2x2 case. Derive the ML estimator of μ and σ^2 of a normal distribution. Check that the estimator of μ is unbiased and then find the standard error of the estimator. Suppose that we have two univariate normal distributions with known means μ_1, μ_2 and unknown variances σ_1^2, σ_2^2 . Describe a procedure for testing the equality of the variances on the basis of independent samples.	5+5 6+4
2.	a) b) c)	 Show that in sampling from normal population the sample mean and the sample variance are independently distributed. Find the sampling distributions. Describe the Pearsonian Chi-square test for homogeneity and independence of attributes. Find the simplified form of the test-statistic for 2x2 case. Derive the ML estimator of μ and σ² of a normal distribution. Check that the estimator of μ is unbiased and then find the standard error of the estimator. Suppose that we have two univariate normal distributions with known means μ₁, μ₂ and unknown variances σ₁², σ₂². Describe a procedure for testing the equality of the variances on the basis of independent samples. State briefly the modifications required if μ₁ & μ₂ are unknown. (i) Explain the following terms: (I) Critical region (II) Alternative hypothesis 	5+5 6+4 10 7+3
2.	a)b)c)d)	Show that in sampling from normal population the sample mean and the sample variance are independently distributed. Find the sampling distributions. Describe the Pearsonian Chi-square test for homogeneity and independence of attributes. Find the simplified form of the test-statistic for 2x2 case. Derive the ML estimator of μ and σ^2 of a normal distribution. Check that the estimator of μ is unbiased and then find the standard error of the estimator. Suppose that we have two univariate normal distributions with known means μ_1, μ_2 and unknown variances σ_1^2, σ_2^2 . Describe a procedure for testing the equality of the variances on the basis of independent samples. State briefly the modifications required if $\mu_1 \& \mu_2$ are unknown.	5+5 6+4 10
2.	a)b)c)d)	 Show that in sampling from normal population the sample mean and the sample variance are independently distributed. Find the sampling distributions. Describe the Pearsonian Chi-square test for homogeneity and independence of attributes. Find the simplified form of the test-statistic for 2x2 case. Derive the ML estimator of μ and σ² of a normal distribution. Check that the estimator of μ is unbiased and then find the standard error of the estimator. Suppose that we have two univariate normal distributions with known means μ₁, μ₂ and unknown variances σ₁², σ₂². Describe a procedure for testing the equality of the variances on the basis of independent samples. State briefly the modifications required if μ₁ & μ₂ are unknown. (i) Explain the following terms: (I) Critical region (II) Alternative hypothesis (III) <i>p</i>-value 	5+5 6+4 10 7+3 2+2+2
2.	 a) b) c) d) e) 	 Show that in sampling from normal population the sample mean and the sample variance are independently distributed. Find the sampling distributions. Describe the Pearsonian Chi-square test for homogeneity and independence of attributes. Find the simplified form of the test-statistic for 2x2 case. Derive the ML estimator of μ and σ² of a normal distribution. Check that the estimator of μ is unbiased and then find the standard error of the estimator. Suppose that we have two univariate normal distributions with known means μ₁, μ₂ and unknown variances σ₁², σ₂². Describe a procedure for testing the equality of the variances on the basis of independent samples. State briefly the modifications required if μ₁ & μ₂ are unknown. (i) Explain the following terms: (I) Critical region (II) Alternative hypothesis (III) <i>p</i>-value (ii) Derive the likelihood-ratio test for sample mean when variance is known. 	5+5 6+4 10 7+3 2+2+2